Copied to
clipboard

G = C62.69D4order 288 = 25·32

53rd non-split extension by C62 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.69D4, C62.230C23, (C2×C6).16D12, C6.53(C2×D12), (C2×C12).30D6, (C22×C6).92D6, C12⋊Dic38C2, C6.11D126C2, (C6×C12).15C22, C6.97(D42S3), (C2×C62).69C22, C22.4(C12⋊S3), C33(C23.21D6), C2.10(C12.D6), C3218(C22.D4), (C3×C22⋊C4)⋊4S3, C22⋊C46(C3⋊S3), C2.8(C2×C12⋊S3), (C3×C6).193(C2×D4), C23.21(C2×C3⋊S3), (C32×C22⋊C4)⋊5C2, (C22×C3⋊Dic3)⋊6C2, (C3×C6).144(C4○D4), (C2×C6).247(C22×S3), (C2×C327D4).12C2, C22.45(C22×C3⋊S3), (C22×C3⋊S3).42C22, (C2×C3⋊Dic3).82C22, (C2×C4).7(C2×C3⋊S3), SmallGroup(288,743)

Series: Derived Chief Lower central Upper central

C1C62 — C62.69D4
C1C3C32C3×C6C62C22×C3⋊S3C2×C327D4 — C62.69D4
C32C62 — C62.69D4
C1C22C22⋊C4

Generators and relations for C62.69D4
 G = < a,b,c,d | a6=b6=c4=1, d2=b3, ab=ba, cac-1=ab3, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=b3c-1 >

Subgroups: 908 in 234 conjugacy classes, 77 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C22.D4, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, C62, C62, C4⋊Dic3, D6⋊C4, C3×C22⋊C4, C22×Dic3, C2×C3⋊D4, C2×C3⋊Dic3, C2×C3⋊Dic3, C2×C3⋊Dic3, C327D4, C6×C12, C22×C3⋊S3, C2×C62, C23.21D6, C12⋊Dic3, C6.11D12, C32×C22⋊C4, C22×C3⋊Dic3, C2×C327D4, C62.69D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, D12, C22×S3, C22.D4, C2×C3⋊S3, C2×D12, D42S3, C12⋊S3, C22×C3⋊S3, C23.21D6, C2×C12⋊S3, C12.D6, C62.69D4

Smallest permutation representation of C62.69D4
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 119 130 110 39 133)(2 120 131 111 40 134)(3 115 132 112 41 135)(4 116 127 113 42 136)(5 117 128 114 37 137)(6 118 129 109 38 138)(7 94 77 14 101 29)(8 95 78 15 102 30)(9 96 73 16 97 25)(10 91 74 17 98 26)(11 92 75 18 99 27)(12 93 76 13 100 28)(19 33 71 82 61 121)(20 34 72 83 62 122)(21 35 67 84 63 123)(22 36 68 79 64 124)(23 31 69 80 65 125)(24 32 70 81 66 126)(43 139 107 59 53 87)(44 140 108 60 54 88)(45 141 103 55 49 89)(46 142 104 56 50 90)(47 143 105 57 51 85)(48 144 106 58 52 86)
(1 87 82 78)(2 108 83 25)(3 89 84 74)(4 104 79 27)(5 85 80 76)(6 106 81 29)(7 118 58 66)(8 39 59 33)(9 120 60 62)(10 41 55 35)(11 116 56 64)(12 37 57 31)(13 117 47 65)(14 38 48 32)(15 119 43 61)(16 40 44 34)(17 115 45 63)(18 42 46 36)(19 30 110 107)(20 73 111 88)(21 26 112 103)(22 75 113 90)(23 28 114 105)(24 77 109 86)(49 67 91 135)(50 124 92 127)(51 69 93 137)(52 126 94 129)(53 71 95 133)(54 122 96 131)(68 99 136 142)(70 101 138 144)(72 97 134 140)(98 132 141 123)(100 128 143 125)(102 130 139 121)
(1 30 110 78)(2 29 111 77)(3 28 112 76)(4 27 113 75)(5 26 114 74)(6 25 109 73)(7 131 14 134)(8 130 15 133)(9 129 16 138)(10 128 17 137)(11 127 18 136)(12 132 13 135)(19 87 82 107)(20 86 83 106)(21 85 84 105)(22 90 79 104)(23 89 80 103)(24 88 81 108)(31 49 65 141)(32 54 66 140)(33 53 61 139)(34 52 62 144)(35 51 63 143)(36 50 64 142)(37 91 117 98)(38 96 118 97)(39 95 119 102)(40 94 120 101)(41 93 115 100)(42 92 116 99)(43 71 59 121)(44 70 60 126)(45 69 55 125)(46 68 56 124)(47 67 57 123)(48 72 58 122)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,119,130,110,39,133)(2,120,131,111,40,134)(3,115,132,112,41,135)(4,116,127,113,42,136)(5,117,128,114,37,137)(6,118,129,109,38,138)(7,94,77,14,101,29)(8,95,78,15,102,30)(9,96,73,16,97,25)(10,91,74,17,98,26)(11,92,75,18,99,27)(12,93,76,13,100,28)(19,33,71,82,61,121)(20,34,72,83,62,122)(21,35,67,84,63,123)(22,36,68,79,64,124)(23,31,69,80,65,125)(24,32,70,81,66,126)(43,139,107,59,53,87)(44,140,108,60,54,88)(45,141,103,55,49,89)(46,142,104,56,50,90)(47,143,105,57,51,85)(48,144,106,58,52,86), (1,87,82,78)(2,108,83,25)(3,89,84,74)(4,104,79,27)(5,85,80,76)(6,106,81,29)(7,118,58,66)(8,39,59,33)(9,120,60,62)(10,41,55,35)(11,116,56,64)(12,37,57,31)(13,117,47,65)(14,38,48,32)(15,119,43,61)(16,40,44,34)(17,115,45,63)(18,42,46,36)(19,30,110,107)(20,73,111,88)(21,26,112,103)(22,75,113,90)(23,28,114,105)(24,77,109,86)(49,67,91,135)(50,124,92,127)(51,69,93,137)(52,126,94,129)(53,71,95,133)(54,122,96,131)(68,99,136,142)(70,101,138,144)(72,97,134,140)(98,132,141,123)(100,128,143,125)(102,130,139,121), (1,30,110,78)(2,29,111,77)(3,28,112,76)(4,27,113,75)(5,26,114,74)(6,25,109,73)(7,131,14,134)(8,130,15,133)(9,129,16,138)(10,128,17,137)(11,127,18,136)(12,132,13,135)(19,87,82,107)(20,86,83,106)(21,85,84,105)(22,90,79,104)(23,89,80,103)(24,88,81,108)(31,49,65,141)(32,54,66,140)(33,53,61,139)(34,52,62,144)(35,51,63,143)(36,50,64,142)(37,91,117,98)(38,96,118,97)(39,95,119,102)(40,94,120,101)(41,93,115,100)(42,92,116,99)(43,71,59,121)(44,70,60,126)(45,69,55,125)(46,68,56,124)(47,67,57,123)(48,72,58,122)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,119,130,110,39,133)(2,120,131,111,40,134)(3,115,132,112,41,135)(4,116,127,113,42,136)(5,117,128,114,37,137)(6,118,129,109,38,138)(7,94,77,14,101,29)(8,95,78,15,102,30)(9,96,73,16,97,25)(10,91,74,17,98,26)(11,92,75,18,99,27)(12,93,76,13,100,28)(19,33,71,82,61,121)(20,34,72,83,62,122)(21,35,67,84,63,123)(22,36,68,79,64,124)(23,31,69,80,65,125)(24,32,70,81,66,126)(43,139,107,59,53,87)(44,140,108,60,54,88)(45,141,103,55,49,89)(46,142,104,56,50,90)(47,143,105,57,51,85)(48,144,106,58,52,86), (1,87,82,78)(2,108,83,25)(3,89,84,74)(4,104,79,27)(5,85,80,76)(6,106,81,29)(7,118,58,66)(8,39,59,33)(9,120,60,62)(10,41,55,35)(11,116,56,64)(12,37,57,31)(13,117,47,65)(14,38,48,32)(15,119,43,61)(16,40,44,34)(17,115,45,63)(18,42,46,36)(19,30,110,107)(20,73,111,88)(21,26,112,103)(22,75,113,90)(23,28,114,105)(24,77,109,86)(49,67,91,135)(50,124,92,127)(51,69,93,137)(52,126,94,129)(53,71,95,133)(54,122,96,131)(68,99,136,142)(70,101,138,144)(72,97,134,140)(98,132,141,123)(100,128,143,125)(102,130,139,121), (1,30,110,78)(2,29,111,77)(3,28,112,76)(4,27,113,75)(5,26,114,74)(6,25,109,73)(7,131,14,134)(8,130,15,133)(9,129,16,138)(10,128,17,137)(11,127,18,136)(12,132,13,135)(19,87,82,107)(20,86,83,106)(21,85,84,105)(22,90,79,104)(23,89,80,103)(24,88,81,108)(31,49,65,141)(32,54,66,140)(33,53,61,139)(34,52,62,144)(35,51,63,143)(36,50,64,142)(37,91,117,98)(38,96,118,97)(39,95,119,102)(40,94,120,101)(41,93,115,100)(42,92,116,99)(43,71,59,121)(44,70,60,126)(45,69,55,125)(46,68,56,124)(47,67,57,123)(48,72,58,122) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,119,130,110,39,133),(2,120,131,111,40,134),(3,115,132,112,41,135),(4,116,127,113,42,136),(5,117,128,114,37,137),(6,118,129,109,38,138),(7,94,77,14,101,29),(8,95,78,15,102,30),(9,96,73,16,97,25),(10,91,74,17,98,26),(11,92,75,18,99,27),(12,93,76,13,100,28),(19,33,71,82,61,121),(20,34,72,83,62,122),(21,35,67,84,63,123),(22,36,68,79,64,124),(23,31,69,80,65,125),(24,32,70,81,66,126),(43,139,107,59,53,87),(44,140,108,60,54,88),(45,141,103,55,49,89),(46,142,104,56,50,90),(47,143,105,57,51,85),(48,144,106,58,52,86)], [(1,87,82,78),(2,108,83,25),(3,89,84,74),(4,104,79,27),(5,85,80,76),(6,106,81,29),(7,118,58,66),(8,39,59,33),(9,120,60,62),(10,41,55,35),(11,116,56,64),(12,37,57,31),(13,117,47,65),(14,38,48,32),(15,119,43,61),(16,40,44,34),(17,115,45,63),(18,42,46,36),(19,30,110,107),(20,73,111,88),(21,26,112,103),(22,75,113,90),(23,28,114,105),(24,77,109,86),(49,67,91,135),(50,124,92,127),(51,69,93,137),(52,126,94,129),(53,71,95,133),(54,122,96,131),(68,99,136,142),(70,101,138,144),(72,97,134,140),(98,132,141,123),(100,128,143,125),(102,130,139,121)], [(1,30,110,78),(2,29,111,77),(3,28,112,76),(4,27,113,75),(5,26,114,74),(6,25,109,73),(7,131,14,134),(8,130,15,133),(9,129,16,138),(10,128,17,137),(11,127,18,136),(12,132,13,135),(19,87,82,107),(20,86,83,106),(21,85,84,105),(22,90,79,104),(23,89,80,103),(24,88,81,108),(31,49,65,141),(32,54,66,140),(33,53,61,139),(34,52,62,144),(35,51,63,143),(36,50,64,142),(37,91,117,98),(38,96,118,97),(39,95,119,102),(40,94,120,101),(41,93,115,100),(42,92,116,99),(43,71,59,121),(44,70,60,126),(45,69,55,125),(46,68,56,124),(47,67,57,123),(48,72,58,122)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C3D4A4B4C4D4E4F4G6A···6L6M···6T12A···12P
order1222222333344444446···66···612···12
size1111223622224418181818362···24···44···4

54 irreducible representations

dim1111112222224
type+++++++++++-
imageC1C2C2C2C2C2S3D4D6D6C4○D4D12D42S3
kernelC62.69D4C12⋊Dic3C6.11D12C32×C22⋊C4C22×C3⋊Dic3C2×C327D4C3×C22⋊C4C62C2×C12C22×C6C3×C6C2×C6C6
# reps12211142844168

Matrix representation of C62.69D4 in GL6(𝔽13)

1120000
100000
0001200
0011200
000005
000080
,
0120000
1120000
0001200
0011200
0000120
0000012
,
370000
6100000
0012000
0001200
000001
000010
,
370000
10100000
0012100
000100
000001
0000120

G:=sub<GL(6,GF(13))| [1,1,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,8,0,0,0,0,5,0],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[3,6,0,0,0,0,7,10,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[3,10,0,0,0,0,7,10,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;

C62.69D4 in GAP, Magma, Sage, TeX

C_6^2._{69}D_4
% in TeX

G:=Group("C6^2.69D4");
// GroupNames label

G:=SmallGroup(288,743);
// by ID

G=gap.SmallGroup(288,743);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,254,219,142,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^4=1,d^2=b^3,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^3*c^-1>;
// generators/relations

׿
×
𝔽